Deblurring and Sparse Unmixing of Hyperspectral Images Using Multiple Point Spread Functions
نویسندگان
چکیده
This paper is concerned with deblurring and spectral analysis of ground-based astronomical images of space objects. A numerical approach is provided for deblurring and sparse unmixing of ground-based hyperspectral images (HSI) of objects taken through atmospheric turbulence. Hyperspectral imaging systems capture a 3D datacube (tensor) containing: 2D spatial information, and 1D spectral information at each spatial location. Pixel intensities vary with wavelength bands providing a spectral trace of intensity values, and generating a spatial map of spectral variation (spectral signatures of materials). The deblurring and spectral unmixing problem is quite challenging since the point spread function (PSF) depends on the imaging system as well as the seeing conditions and is wavelength varying. We show how to efficiently construct an optimal Kronecker product-based preconditioner, and provide numerical methods for estimating the multiple PSFs using spectral data from an isolated (guide) star for joint deblurring and sparse unmixing the HSI datasets in order to spectrally analyze the image objects. The methods are illustrated with numerical experiments on a commonly used test example, a simulated HSI of the Hubble Space Telescope satellite.
منابع مشابه
تجزیه ی تُنُک تصاویر ابرطیفی با استفاده از یک کتابخانه ی طیفی هرس شده
Spectral unmixing of hyperspectral images is one of the most important research fields in remote sensing. Recently, the direct use of spectral libraries in spectral unmixing is on increase. In this way which is called sparse unmixing, we do not need an endmember extraction algorithm and the number determination of endmembers priori. Since spectral libraries usually contain highly correlated s...
متن کاملLand Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing
The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...
متن کاملAn Overview of Nonlinear Spectral Unmixing Methods in the Processing of Hyperspectral Data
The hyperspectral imagery provides images in hundreds of spectral bands within different wavelength regions. This technology has increasingly applied in different fields of earth sciences, such as minerals exploration, environmental monitoring, agriculture, urban science, and planetary remote sensing. However, despite the ability of these data to detect surface features, the measured spectrum i...
متن کاملجداسازی طیفی و مکانی تصاویر ابرطیفی با استفاده از Semi-NMF و تبدیل PCA
Unmixing of remote-sensing data using nonnegative matrix factorization has been considered recently. To improve performance, additional constraints are added to the cost function. The main challenge is to introduce constraints that lead to better results for unmixing. Correlation between bands of Hyperspectral images is the problem that is paid less attention to it in the unmixing algorithms. I...
متن کاملSpatial Resolution Enhancement of Hyperspectral Images Using Spectral Unmixing and Bayesian Sparse Representation
In this paper, a new method is presented for spatial resolution enhancement of hyperspectral images (HSI) using spectral unmixing and a Bayesian sparse representation. The proposed method combines the high spectral resolution from the HSI with the high spatial resolution from a multispectral image (MSI) of the same scene and high resolution images from unrelated scenes. The fusion method is bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 37 شماره
صفحات -
تاریخ انتشار 2015